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I.  Flow Mechanics 

1. Conservation of Momentum 
Objective: derive basic open channel flow equations.  Force balance for fluids.  Derivation of 
Boundary Shear Stress (τb) and factors that control its magnitude in natural flows. 
 
Definitions: 

Linear Momentum = mass - velocity product:  mu 
Change in momentum = acceleration:   d

dt
mu( ) = m

du
dt

= ma  

1A. Kinematics:  Isaac Newton (1687) 
Newton’s Second Law: “change in linear momentum is equal to the sum of forces acting on the 
body” 
      F∑ = ma  

1B.  Conservation of Momentum for Fluids 
Chauchy’s First Law: generalization of Newton’s Second Law for a parcel of fluid -- momentum 
balance for a unit volume of fluid (Fv = force per unit volume) 
 
Consider a volume of fluid (flow depth h and unit bed area (Δx, Δy) of density ρ moving with 
mean velocity u  : 
      Fv = ρ

du 
dt∑  

 
We will derive the sum of forces acting on a 1-dimensional flow (velocity only varies in the 
downslope or x-direction) for simplicity.  Variables: flow depth (h), bed surface slope (α) = 
angle between z and g, and mean velocity ( u ), where mean velocity implies the depth-averaged 
value. 
 

 
 
Note that as we will see, water responds to the surface slope, which in the simplest case of 
uniform depth is equal to the bed slope (α).  As bed slope is far easier to measure, it is often used 
as an approximation of the water surface slope. 
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Forces acting on a volume of fluid include: 
   Gravity, Pressure Gradient, Bed Friction 
 
1B.1 Gravity (body force) 

Weight = ρgΔxΔyh (acts in the vertical direction) 
Driving force = downslope component of weight = ρgΔxΔyh sinα 
(Note: Normal force = ρgΔxΔyh cosα) 
 
Driving force per unit volume = ρgΔxΔyh sinα /(ΔxΔyh) = ρgsinα 

1Β.2 Pressure gradient (pressure (p) = force per unit area) 
Hydrostatic pressure = weight of the overlying water column per bed area = ρgh.  Here 
we make the small angle approximation that cosα ~ 1, so the fact that h is not measured 
in the vertical is negligible.  This Hydrostatic pressure acts on both the upstream and 
downstream sides of the unit volume = force per area (Δyh). 
 
There is a net force on the volume only in the presence of a pressure gradient.  The 
pressure gradient is given by the difference between pressure felt on the upstream and the 
downstream edges of the volume, divided by the width (Δx) of the volume, thus giving a 
net force per unit volume: 
 

  
p x( )− p x + Δx( )

Δx
=

ρgh x( )− ρgh x + Δx( )
Δx

= ρg
Δh
Δx

= ρg
∂h
∂x

 

 

1B.3  Bed Friction 
Bed friction is described by the Shear Stress (τb) acting on the bed.  The fluid exerts a 
shear stress on the bed (oriented downstream), and the bed exerts this same shear stress 
on the fluid (oriented upstream).  Bed friction is the primary source of resistance to flow.  

 
Note that a stress is defined as a force per unit area.  Thus, bed friction force per unit 
volume of fluid (fv) is given by the basal (or boundary) shear stress divided by flow depth 
(h): 
     fv =

τ b

h
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The condition of an unaccelerated fluid (steady, uniform velocity) of uniform flow depth 
requires that bed friction must balance the gravitational driving stress: 
     τb

h
= ρgsinα  

 
which is identical for the force balance on a resting block on an inclined plane familiar 
from freshman physics.  A more formal proof of this follows below. 

1B.4  Momentum Equation for Fluids (1-dimensional flow) 
Chauchy’s First Law: 
Rate of change of momentum balances sum of forces 
 
 ρ

du 
dt

= Fv∑  = gravitational driving force +/- pressure gradient - bed friction 

 
Signs: gravity always drives flow (positive), pressure gradient can either drive flow 
(depth decreases downstream) or resist flow (depth increases downstream), and bed 
friction always resists flow (negative). 
 
From 1B.1, 1B.2, 1B.3: 

    ρ
du 
dt

= ρgsinα − ρg
∂h
∂x

−
τ b

h
 

 
Note that the sign on the pressure gradient term creates the desired effect. 

1C.  Temporal and Spatial Momentum Changes 

The term ρ
du 
dt

 denotes the TOTAL or MATERIAL derivative of momentum, encapsulating 

BOTH temporal and spatial changes.  The total derivative is also called the material derivative 
because it tracks changes in momentum in a frame of reference that follows a given parcel of 
water, thus both temporal and spatial variations in flow velocity, and thus momentum are “felt”. 
 
How can you isolate temporal and spatial changes? 
hint:  the mean flow velocity ( u = u x, t( )) MUST matter, as the rate at which the moving frame 
of reference moves downstream essentially determines how a spatial change in momentum 
appears as a temporal rate of change. 
 
What does this mean in mathematical terms?   
Consider the mean velocity, here constrained to vary only in time and distance downstream 
 
      u = u x, t( ) 
 
Find the derivative of velocity (time and space), using the chain rule: 

      du =
∂u 
∂t

dt +
∂u 
∂x

dx  
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The time rate of change in velocity is du 
dt

, so divide through by dt: 

      
du 
dt

=
∂u 
∂t

dt
dt

+
∂u 
∂x

dx
dt

 

 
Note that dx

dt
≡ u  , which explains how the material velocity plays a role: 

      
du 
dt

=
∂u 
∂t

+ u 
∂u 
∂x

 

 
where the first term on the RHS is the rate of change at a fixed point (the unsteady term), and the 
second is the rate of change associated with flow from one point to another (the convective 
acceleration term).  Unsteady flow relates to a rising or falling hydrograph, the convective 
accelerations to flow around bends or over obstructions. 

1D.  Steady, Uniform Flow 
 
From above we have for conservation of momentum: 
 

    
hx

hgg
x
uu

t
u

dt
ud bτ

∂
∂ραρ

∂
∂

∂
∂ρρ −−=⎟

⎠
⎞

⎜
⎝
⎛ += sin  

 

Steady flow = no change of velocity in time at a fixed point =>  
∂
∂t

= 0 

 

Uniform flow = no change of velocity in space at a fixed time => 
∂
∂x

= 0  

 

Under these conditions, the conservation of momentum reduces to:  
hx

hgg bτ
∂
∂ραρ −−= sin0  

Re-writing we get: 

     ⎟
⎠
⎞

⎜
⎝
⎛ −=

x
hghb ∂

∂αρτ sin  

 
The term in brackets is approximately equal to the water surface slope.  Alluvial channels 
usually have slopes < 5°, and the small angle approximation (sinα ~ tanα = -dz’/dx’ = So; where 
z’ is oriented in the vertical and denotes bed elevation) is often used.  Thus basal shear stress is 
often approximated as (using S for water surface slope): 
 
     ghSb ρτ =  
(τb also related to mean flow velocity and the shape of velocity profiles: next lecture) 
 
Note that this simple expression for the Boundary Shear Stress is in fact a statement of 
conservation of momentum, albeit under conditions of Steady, Uniform flow.  These 
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assumptions are often referred as the condition of “Normal Flow”, particularly in the engineering 
literature. 

1E.  Steady, Non-Uniform Flow 
SKETCH: Flow over a large bar form (1D case), acceleration over rise. 

 
From above we have for conservation of momentum: 
 

    
hx

hgg
x
uu

t
u

dt
ud bτ

∂
∂ραρ

∂
∂

∂
∂ρρ −−=⎟

⎠
⎞

⎜
⎝
⎛ += sin  

 

Steady flow = no change of velocity in time at a fixed point =>  
∂
∂t

= 0 

 
Under these conditions, the conservation of momentum reduces to:   

hx
hgg

x
uu bτ

∂
∂ραρ

∂
∂ρ −−= sin  

 
Solving for boundary shear stress under these conditions gives: 

    
x
uhu

x
hghghb ∂

∂ρ
∂
∂ραρτ −−= sin  

    
x
uhughSb ∂

∂ρρτ −≈  

 
Thus we see that the acceleration over the obstacle (or around bends) extracts some momentum 
from the flow such that the boundary shear stress is no longer given simply by the depth-slope 
product.  With field data on the spatial pattern of flow velocities the deviation from “Normal 
Flow” conditions and the often assumed relation, ghSb ρτ = , can be readily evaluated.  In most 
cases the difference is less than a factor of 2. 

5 



12.163/12.463 Surface Processes and Landscape Evolution 
K. Whipple  September, 2004 

2. Vertical Velocity Profiles 
Objective: derive velocity profiles u(z) as a function of channel slope, depth, roughness 
 
2A. Newtonian Viscous Flow 
 

A1. Objective: “constitutive relationship” for water; describes the flow behavior of 
material. 
 
Relates strain rate to shear stress (ie. response to driving forces acting per unit area on the 
fluid). 
 

Strain rate (1d):  
z
u

∂
∂     ;      Shear Stress:    ( )zτ  

 
A2. Newton’s Experiment 
 
SKETCH OF EXPERIMENTAL SETUP 

 
Measure τ, Δu, Δz;  Plot strain rate vs. shear stress;  

z
u

z
u

∂
∂

≈
Δ
Δ  

 
SKETCH OF EXPERIMENTAL RESULTS 

 
 
Regression of experimental data (equation of the line): 

( )
z
uz

∂
∂

= μτ         units: [kgm-1s-2] = [kgm-1s-1] [s-1] 

   units: [Pa] = [Pa s] [s-1] 
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μ is the viscosity – a material property, function of temperature, results from interaction 
of molecules (momentum exchange by molecular interaction). 
 

kinematic viscosity:   
ρ
μν =  

 
2B. Laminar Flow Velocity Profile 
 
 B1. Shear Stress Distribution in an Unaccelerated (Steady Uniform) Flow 

As shown earlier, αρτ singhb =  -- for an unaccelerating flow, shear stress on the 
bed must balance the downslope component of the weight of the overlying fluid 
(same as for a rigid block on an inclined plane).  Recall αρ sing  is the driving 
force per unit volume of fluid due to gravity. 
 
This balance must be true at all levels in the flow, with shear stress reaching a 
maximum at the bed (deepest water) and decreasing linearly to zero at the surface 
(neglecting possible wind stress on surface): 
 

( ) ( )zhgz −= αρτ sin  

 
 B2. Integration for Velocity Profile 
 

Now that we know the stress – strain rate response of water (laminar conditions) 
and we know the distribution of stress within the flow, it is possible to combine 
these to derive the velocity distribution: 
 

  ( ) ( )
μ
αρ

μ
τ zhg

z
uz −

=
∂
∂

=
sin  

 
Integrate once with respect to z 
 

  ( ) Czhzgzu +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
sin 2

μ
αρ  
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No slip boundary condition  ( ) 00 =u  ;  therefore C = 0 
 
Result: Parabolic Velocity profile.   
Note: No dependence on boundary roughness in this solution.  Why? 
 
SKETCH: velocity profile, define roughness length-scale, ks

 
2C. Turbulent Flow 
 
 C1. The Problem 
 

Flow of water is unstable – minor perturbations to flow velocity grow rapidly, 
produce chaotic, highly variable instantaneous velocities (all directions).  This 
chaotic behavior is organized into eddies of a continuum of scales with the largest 
eddies on the scale of flow depth. 
 
Net effect: much greater resistance to flow – basically the vigorous mixing causes 
momentum exchange between slow-moving and fast-moving parts of the flow.  
The effective viscosity (called eddy viscosity) >> μ. Interaction of eddies with the 
boundary is important and thus roughness becomes an important control on flow 
velocity.   
 
Result: Blunted velocity profile.  Shear is concentrated in a narrow band near the 
bed.  As a result, for much of the flow, velocity changes relatively slowly with 
flow depth (due to effective mixing), such that the mean velocity is a better 
description of the flow profile than it is in the case of laminar viscous flow 
(parabolic velocity profile). 
 
SKETCH of laminar and turbulent velocity profiles. 
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Because of the turbulent fluctuations of instantaneous velocity, the velocity 
profile represents the time-averaged velocity – averaging out turbulent 
fluctuations associated with eddies. 
 
SKETCH of 3 panels, u(t) and 3 different levels within the flow. 

 
 C2. Condition for the onset of Turbulence. 
 
  Reynolds Number (Re) 
 
  Concept: inertial forces (velocity, fluctuations) drive instability 

Viscous forces (molecular interactions) dampen instability (smothering 
the smallest scale eddies) 
Where inertial forces dominate  turbulent flow 
Where viscous forces dominate  laminar flow 
 

μ
ρ hu

forcesviscous
forcesinertialRe =≡  

 
Note: non-dimensional so equally applicable to all flows.  Varying fluid 
density has same impact as varying viscosity, or flow depth, or velocity, 
for example. 
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  Empirical studies have defined the critical Reynolds Number for the onset  
of turbulence. 
 
 Pipe flow:  2000_ ≈criteR  
 Open channel flow:  500_ ≈criteR  

 
 C3. Turbulence “closure” and Velocity Profiles 
 

Objective: Develop relation between shear stress, boundary roughness, and 
turbulent velocity profiles. 
 
Prandtl Mixing Theory – simple and works well near the bed, good enough for 
our purposes. 
 
Analogy to laminar flow: Eddy Viscosity 
 

 ( )
z
uz

∂
∂

= κτ  

 
Critical difference: Eddy viscosity is a function of the flow (velocity, flow depth, 
slope) not a material property like the molecular viscosity μ. 
Eddy viscosity describes the exhange of momentum between “layers” of fluid 
 
SKETCH defining l the mixing length and cascade of eddies. 

 
How efficient is the momentum exchange? 

 

z
ulumomentum

∂
∂

≈Δ≈Δ ρρ  

   
  Prandtl’s intuition (confirmed in experiments): the efficiency of  

momentum exhange also scales with eddy size, l, giving: 
 

  
z
ul

∂
∂

∝ 2ρκ  
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However, near the boundary, eddy size (l) is limited by the distance from the 
boundary (z) 
 

 
 
Thus, near the boundary zl ≈ , and the eddy viscosity scales as: 
 

  
z
uz

∂
∂

∝ 2ρκ  

 
“Near the boundary” technically means hz 2.00 << . 
We also know that near the boundary the turbulent shear stress associated with 
the eddy viscosity must be approximately equal to the boundary shear stress: 
 

  
2

2 ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∝
∂
∂

≈
z
uz

z
u

b ρκτ  

 
To simplify the mathematics, Prandtl introduces the shear velocity u*
By definition: 
 

  
ρ

τ bu ≡*  units [ms-1]  velocity units 

 
Thus Prandtl mixing theory predicts the following relation for shear velocity: 
 

  
z
uz

z
uzu

∂
∂

∝⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∝ ρρ
2

2
*  

 
From experiments this is verified to have a constant proportionality coefficient 
(called Von Karman’s constant, k) 
 

  
z
ukzu

∂
∂

=*      ;   where k = 0.4 

 
Dimensional analysis confirms that k is a constant (unitless). 

 
 C4. The Law of the Wall 
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Prandtl mixing theory gives us a simple parameterization of turbulent flow which 
can be used to determine the velocity profile: 
 

  
zk

u
z
u 1*=

∂
∂  

 
Integrate once with respect to z 
 

  ( ) ( ) Cz
k
u

zu += ln*  

 
Boundary needed condition to find C: u(z) goes to zero at an elevation (just above 
the bed), zo.  In fact turbulent flow does not reach the boundary – a viscous sub-
layer is always present, so the turbulent flow law can not be extended to the 
boundary.  zo is an effective roughness parameter, related to grainsize, bedform 
size, and other effects.  It is not a physically meaningful height (velocity really 
goes to zero on the boundary – zo dodges the problem of needing to “match” the 
turbulent velocity profile to the very thin viscous profile in the sublayer.) 
 
So, at z = zo, u(z) = 0: 
 

  ( ) ( ) Cz
k
u

zu oo +== ln0 *  

 

  ( )oz
k
u

C ln*−=  

 

  ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

oz
z

k
u

zu ln*  

 
Final expression is the so-called “Law of the Wall”.  Technically it is only valid 
near the boundary ( hz 2.00 << ) where Prandtl mixing theory applies, but is often 
extended with reasonable accuracy to the full depth profile – it will be good 
enough for our purposes.  [Problems of suspended sediment transport, not 
considered in detail in this class, will be more sensitive to details of the vertical 
velocity structure]. 
 
SKETCH logarithmic velocity profile, discuss determination of zo and shear stress 
(τb) from velocity profile data. 
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Regression Analysis: 
ln(z) on y-axis, u(z) on x-axis; equation of the line: 
 

( ) ozzu
u
kz lnln

*

+=    … slope of line gives k/u*, intercept ln(zo) 

 
u(z) on y-axis, ln(z) on x-axis; equation of the line: 
 

( ) oz
k
u

z
k
u

zu lnln ** −=  .. slope of line gives u*/k, intercept –( u*/k)ln(zo) 

 
2

*ub ρτ =  
 
In next lecture we will discuss the factors that influence the value of zo, the 
roughness parameter, including the thickness of the viscous sub-layer relative to 
the boundary roughness.  We will consider two endmember states: hydraulically 
smooth flow (HSF) and hydraulically rough flow (HRF). 

 
 C5.  Vertically Averaged Velocity & the 4/10ths Rule 
 

To find the vertical average velocity, integrate once (form the bed z = 0 to the 
surface z = h) and divide by flow depth (h) 
 

  ( ) ∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=≡〉〈

h

o

h

dz
z
z

k
u

h
dzzu

h
u

0

*

0

ln11  

 
Recall  ∫ −= xaxxax lnln

 

  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=〉〈 =hz

oz
zz

k
u

h
u 1ln1 *  

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=〉〈 1ln*

oz
h

k
u

u  
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This can also be written as: 
 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=〉〈 )37.0ln(ln*

oz
h

k
u

u  

 

  ( ) )37.0(37.0ln 37.0
* huzu

z
h

k
uu hz

o

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=〉〈 =  

 
This is called the 4/10ths rule: the velocity measured at ~4/10 flow depth up from 
the bed should be approximately equal to the mean velocity. 
 
Another rule of thumb is that mean velocity is about 8/10s of the surface velocity 
(which is easily measured). 
 
Next lecture: Hydraulic formulae for open channel flow -- Alternative 
engineering approximations for cross-sectionally averaged velocity in channels.  
These involve various formulations of how to represent boundary roughness and 
how to estimate roughness parameters from field data. 
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3. Hydraulic Formulae for Open Channel Flow 
Objective: review relations for cross-sectional mean velocity as a function of channel slope, 
depth, roughness, and methods for measuring the roughness parameters. 
 
FACTORS INFLUENCING HYDRAULIC ROUGHNESS 
 
Bed material size (D50, D84, ks, zo, ng); Relative roughness (h/D50); Presence of sediment 
transport (momentum extraction); Bedforms and barforms; Vegetation; Obstructions (tree 
stumps, logs, boulders, bedrock outcrops, ect); Variations in channel width and depth; Channel 
curvature (sinuosity) 
     
METHODS FOR ESTIMATING ROUGHNESS PARAMETERS 
 
"Roughness" is represented in various ways in familiar flow velocity equations.  We will 
consider: Chezy’s equation, Manning's equation, the Darcy-Weisbach equation, and a 
generalized D-W equation (all for average velocity), and the "Law of the Wall" equation for the 
velocity profile or a turbulent flow near a boundary (logarithmic). 
 
Variables Used: 
 
S : Water surface slope (= bed slope for steady uniform flow) [m/m] 
Rh : Hydraulic radius (Rh = A/P = flow depth for infinitely wide channel) [m]  
A : Cross-sectional area [m2] 
P : Wetted perimeter [m] 
Q : Water Discharge [m3/s] 
u  : Cross-sectionally averaged velocity [m/s] 
z : cartesian coordinate (perpendicular to bed) [m] 
h : flow depth (perpendicular to bed) [m] 
τb : basal shear stress [Pa] 
k : von Karman’s constant = 0.40 
C : Chezy roughness coefficient [m1/2/s] 
f : Darcy-Weisbach friction factor [ ] 
n : Manning’s roughness factor [s/m1/3] 
Cf : Generalized non-dimensional friction factor [ ]  
ks : grain roughness scale ~ D84   
 
Chezy’s Equation: 
 

   SRCu
A
Q

h==  

 

15 



12.163/12.463 Surface Processes and Landscape Evolution 
K. Whipple  September, 2004 

what are the units of C?   [ g ] 
 
 
Manning's Equation: (metric units!!) 
 (1840’s;  observed chezy’s C = function of depth) 
 

   21321 SR
n

u
A
Q

h==  

 

what are the units of n? 
 
 
Darcy-Weisbach Equation: (pipe flow & theory; f is non-dimensional) 
 

   u 2 =
8gRhS

f
 

 

Generalized Darcy-Weisbach: (the 8 coefficient above is only for pipes) 
 

   u =
gRhS
C f

1 2      ;    τ b = ρCf u 2    (for Rh ~ h) 

 

 
Law of the Wall:  
 
(for turbulent flow, applies strictly just near the boundary, z < .2h, but works fairly well for 
entire profile) 
 

   u =
u*

k
ln

z
zo

  

   where u* =  
 τb
ρ    ,    “shear velocity” 

   k = 0.40   (Von Karman's Constant) 
 
   zo is the point where idealized velocity profile goes to zero (a   
   fictional level in the flow) 
 
 
Integrating over flow depth and dividing by h (for vertically averaged velocity): 
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   〈u〉 =
u*

k
ln

h
zo

−1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
The 4/10s Rule: 
 

 〈u〉 =
u*

k
ln

h
zo

+ ln(.37)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

u*

k
ln

.37h
zo

= u z = .37h( ) 

 
 
 
I.  Visual Estimates of Manning's n: 
 
 1.  Visual estimate of field conditions using experience, "type" photographs, and 
 published tables.  Tables are found in most geomorphology texts.  "Type" photos  are in 
Water Supply Paper 1849. Listed below are a few examples (from Richards): 
 
  Description                    Manning's n                  
 
  Artificial channel, concrete     .014 
  Excavated channel, earth     .022 
  Excavated channel, gravel     .025 
  Natural channel, < 30 m wide, clean, regular   .030 
  Natural channel, < 30 m wide, some weeds, stones   .035 
  Mountain stream, cobbles, boulders    .050 
  Major stream, > 30 m wide, clean, regular   .025 
  
 
 2.  Estimate from Table given by Chow (1959), where n is given by: 
   
  n  =  (n0 + n1 + n2 + n3 + n4) m5 
 
 Material, n0  Degree of Irregularity, n1  Variation of cross-section,  n2    
 earth         .020 smooth  .000  gradual   .000 
 rock       .025 minor  .005  alt. occasionally  .005 
 fine gravel    .024 moderate  .010  alt. frequently      .010-.015 
 coarse grav.  .028  severe  .020   
 
 
 Channel obstructions, n3  Vegetation n4  Degree of meandering, m5 
 negligible .000  low .005-.010 none  1.000 
 minor  .010-.015 medium .010-.025 minor  1.000 
 appreciable .020-.030 high .025-.050 appreciable 1.150 
 severe  .040-.060 v.high .050-.100 severe  1.300 
 
II.  Empirical  relationship between the Darcy-Weisbach friction factor and grainsize and flow 
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depth (Leopold et al., 1964). 
 
 Empirical data fits the line: 
 

  
1
f

= 2.0 log
h

D84

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +1.0   see figure, next page. 

 
 
  D84 = 84th percentile value from cum. freq. distribution (grain diameter) 
 
 
 
 
 
III.  Back-calculation of n or f from field data using velocity equations given above. 
 

   u =
1
n

Rh
2 3S1 2 

 
  S  =   slope of the water surface  
 
 Method: u (cross-sectional average), R, and S are measured, 
  n and/or f is back-calculated. 
 
 
IV.  Calcualtion of local hydrodynamic roughness ("grain roughness": zo) from velocity profiles 
using the Law of the Wall. 
 

  u =
u*
k

ln
z

zo
 

  where u* =  
 τb
ρ    ,    k = 0.40   (Von Karman's Constant) 

 
 
 First we must define hydraulically rough (HRF) vs. hydraulically smooth (HSF) flow.  
Given that ks = grain diameter, δν = thickness of the viscous sub-layer, and ν = kinematic 
viscosity, we define the shear Reynolds number (R*) as 
 

   R* =  
u*ks

ν   

 

18 



12.163/12.463 Surface Processes and Landscape Evolution 
K. Whipple  September, 2004 

 HSF occurs where R* < 3, and HRF where R* > 100, from Nikaradse's data. 
  
 Case 1. HSF: 
 

   zo  = 
ν

9u*
  

 
  
 
 Case 2. HRF: 
 

   zo  =  
ks
30   ;   ks ~ D84  (grain roughness) 

 
 If  3 <  R*  < 100, then find zo form Nikaradse's diagram, see next page. 

 Note, for typical river temperatures, ν = 1.514  x 10-2  cm2/s. 
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